- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
BrijeshKumar, Mishra (1)
-
Rajeev, Prabhakar (1)
-
Sathyamurthy, N (1)
-
Sreerag, M Narayanan (1)
-
Vaidhyanathan, Ramamurthy (1)
-
Vaitheesh, Jeyapalan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Water is an under-appreciated reaction medium that has been shown to facilitate photodimerization reactions. Despite having a low formal concentration, hydrophobic nature of organic compounds could lead to higher local concentrations, thereby favoring their cycloaddition. In contrast, photodimerization reactions are unlikely to occur in organic solvents under similar conditions. This study explores the supramolecular assembly of small organic molecules in water, focusing on their role in promoting photodimerization reactions. NMR spectroscopy, molecular dynamics simulations, and ab initio calculations were used to examine the dynamic interactions between indene and its aggregated state in water. Quantum mechanical calculations suggest that the stacking of indene with an antiparallel-displaced orientation is the most stable configuration, and MD simulations support the role of water in promoting aggregation. NMR results confirm the existence of indene aggregates, and 2D NMR reveals dynamic exchange between monomer and aggregate states. The study elucidates the complex dynamics of indene aggregation and its impact on photodimerization, providing insights into designing other photoreactions in water.more » « lessFree, publicly-accessible full text available January 2, 2026
An official website of the United States government
